The Transmembrane Domain and Acidic Lipid Flip-Flop Regulates Voltage-Dependent Fusion Mediated by Class II and III Viral Proteins
نویسندگان
چکیده
Voltage dependence of fusion induced by class II and class III viral fusion proteins was investigated. Class II proteins from Ross River and Sindbus virus and a mutant class III protein from Epstein Barr virus were found to induce cell-cell fusion that is voltage dependent. Combined with previous studies, in all, four class II and two class III protein have now been shown to exhibit voltage-dependent fusion, demonstrating that this is probably a general phenomenon for these two classes of viral fusion proteins. In the present study, monitoring fusion of pseudovirus expressing Vesicular Stomatitis virus (VSV) G within endosomes shows that here, too, fusion is voltage dependent. This supports the claim that voltage dependence of fusion is biologically relevant and that cell-cell fusion reliably models the voltage dependence. Fusion induced by class I viral proteins is independent of voltage; chimeras expressing the ectodomain of a class I fusion protein and the transmembrane domain of VSV G could therefore be used to explore the location within the protein responsible for voltage dependence. Results showed that the transmembrane domain is the region associated with voltage dependence. Experiments in which cells were enriched with acidic lipids led to the conclusion that it is the flip-flop of acidic lipids that carries the charge responsible for the observed voltage dependence of fusion. This flip-flop occurred downstream of hemifusion, in accord with previous findings that the voltage dependent steps of fusion occur at a stage subsequent to hemifusion.
منابع مشابه
Negative Potentials Across Biological Membranes Promote Fusion by Class II and Class III Viral Proteins
Voltage was investigated as a factor in the fusion of virions. Virions, pseudotyped with a class II, SFV E1 or VEEV E, or a class III protein, VSV G, were prepared with GFP within the core and a fluorescent lipid. This allowed both hemifusion and fusion to be monitored. Voltage clamping the target cell showed that fusion is promoted by a negative potential and hindered by a positive potential. ...
متن کاملDomain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion
Alphaviruses and flaviviruses infect cells through low pH-dependent membrane fusion reactions mediated by their structurally similar viral fusion proteins. During fusion, these class II viral fusion proteins trimerize and refold to form hairpin-like structures, with the domain III and stem regions folded back toward the target membrane-inserted fusion peptides. We demonstrate that exogenous dom...
متن کاملInhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three d...
متن کاملHigh-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop
Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...
متن کاملA new low power high reliability flip-flop robust against process variations
Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...
متن کامل